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ABSTRACT S. ..

i It is shown that the implementation o" many mathematical programming algorithms
using spreadsheet software can be described as instances of a nonprocedural approach to
computer programming. This concept is generalized to an abstract computing environment
called HYPERCELLS. Its significance in view of rapid development in parallel comp-
utation is discussed.

1. INTRODUCTION

With the widespread use of microcomputers in academia, business, industry and
government, spreadsheet software has become the most popular general purpose quant-
itative tool for numerical computation. It is essentially a two dimensional array of cells.
Each cell may contain text for documentation, numerical values from data, or a formula
dependent on vaiues in other cells. Whenever the value in a cell is changed, the content of K
cells with formulas depending on it can be recalculated automatically. A simple exampis-ii :
given in Figure 1. Cells B I through B4 contain quarterly revenues. Cell B6 contains a
formula for the sum of the values in B I through B4. It therefore represents the total
revenue for the year. When the quarterly values are entered or altered, the total is updated

accordingly.

- Most commercial spreadsheet packages provide a substantial set of mathematical
functions with which complex formulas can be written for nontrivial computationaliU models. Specifics of a design include the order of computation and the ability to resolve

';.. circular references. For this reason, while the initial thrust has been in finance and

accounting applications, there is a growing interest in this type of computing environment
l ,in science and engineering.
V ,In this paper, we demonstrate and generalize certain abstract properties of modeling

and computing in the spreadsheet environment. They can be interpreted as a nonpro-

jjJ&Ij i cedural approach to the implementation of numerical methods in general and mathematical
programming in particular. A nonprocedural approach to computer programming is one
that relies more on the characterization of the solution than on the description of every step

* To appear in impact of Recent Computer Advances on Operations Research,
Elsevier-North Holland (1989) 8 8 17

,,8 1 f. ,,72



required in the computation. The distinction from conventional computer programming is
shown in Section 2. The cases of dynamic and linear programming are presented in

Sections 3 and 4 respectively. Section 5 introduces the concept of Hypercells as a general
abstraction of the spreadsheet and discusses the potential of parallel processing within this

framework.
The purpose of this paper is to formalize to some extent the departure from

conventional implementation of mathematical programming afforded by the spreadsheeet

environment. Its significance draws from both the ever increasing popularity of the latter

as well as the potential for generalization. At present it is difficult to project future

development in this direction and hence no attempt will be made to compare the absolute

effectiveness of the different approaches.

A B
1 First Quarter $125,000.00
2 Second Quarler $145,000.00
3 Third Quarter $137,000.00
4 Fourth Quarter $158,000.00
5
6 Total Revenue $565,000.00

Figure 1. Simple Example of a Spreadsheet Model
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Figure 2. Nonprocedural Implementation of Matrix Multiplication ' COPY

2. NONPROCEDURAL IMPLEMENTATION OF NUMERICAL METHODS

To illustrate the nonprocedural environment provided by spreadsheet software, we 0
use the simple example of matrix multiplication. In Figure 2, the range of cells from Al to

D3 contains a 3 by 4 matrix A. The range of cells from Fl to H4 contains a 4 by 3 matrix

B. The product C is in the range from 11 to L3.
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In conventional computer programming, a procedure can be coded to compute the

coefficients of the product matrix. Indeed, by looping over i from I to 3 and j from I to 3.
Cij is given by the inner product of row i in A and Column j in B. The formula for the
inner product is specified once with generic indices i and j and executed repeatedly as i and

j take on different values over the appropriate ranges.

Consider next the situation on a spreadsheet The value of Cii is given by a formula

in cell ,1: +$A I*F$1+$B I"F$2+$C I *F$3+$D I"F$4. The "$" sign indicates an absolute
address and its absence indicates a relative address. Since all commercial spreadsheet

packages include such feature, this formula can be copied to all the other cells in C using
typically a single operation. Each cell in C will then contain a formula for the appropriate

inner product. When entries in A or B are altered, the values in C will be recalculated. Note

that ultimately, the values in C are computed "procedurally" in some well defined sequence
specific to the particular spreadsheet environment. What we mean here by a nonprocedural

approach is that there is no explicit code in some computer language for the implementation

of the algorithm for matrix multiplication. Instead, the spreadsheet in Figure 2 contains the

essence of the operation, namely, that every coefficient in the result is the inner product of

a row and a column. It is quite obvious that this nonprocedural approach implies

redunduncy and requires more memory than conventional programming. However, this
redunduncy can be exploited in parallel computation with multiprocessers. In our example,

each inner product for the coefficient of the product matrix can be computed independently.

Using the same principle, many numerical methods can be implemented on a
spreadsheet. Examples of significant potential include finite difference methods for the

solution of partial differential equations. In the following, we focus on mathematical pro-

gramming and illustrate the nonprocedural approach for both dynamic and linear pro-

gramming.

3. DYNAMIC PROGRAMMING

Consider the simple example in Figure 3. There are two stages. Stage 2 has two
states: C and D. State C has a single choice with resulting state E and immediate payoff of

3 units. State D has a single choice with resulting state E and immediate payoff of 2 units.

Stage one has two states: A and B. State A has two choices: one with resulting state C and
immediate payoff of 2 units; the other with resulting state D and immediate payoff of 5

units. State B has two choices: one with resulting state C and immediate payoff of 3 units;

the other with resulting state D and immediate payoff of 4 units. The DP problem is to find

an optimal policy which prescribes a sequence of choices from each starting state in Stage
I to termination that will maximize the total payoff.
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Figure 3. A Simple Example in Dynamic Prograxnuning
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Figure 4. Spreadsheet Implementation of a Dynamic Programming Model
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The method of recursion is assumed well known and will not be described her. To
implement this method on a spreadsheet, it is necessary to design a format for the DP

model. Figure 4 represents the above example in the format used in (Ho 1987]. There is a
section with five columns for each stage. The top part of such a section contains the
optimal policy for the stage. For instance, from State A at Stage 1, the optimal choice is to

go to State D in the next stage with an optimal value of 7. Whereas from State B there are

alternative optimal choices with a value of 6. The rest of the section contains the choices

for each state. A decision is specified by the resulting state at the next stage. The payoff

now is problem data. The payoff later is given by the optimal value of the resulting state.
The total payoff is the sum of payoff now and payoff later. The optimal value for the state

is the maximum of the total payoffs among the choices. An asterisk indicates an optimal

choice. The optimal policy is the optimal choice if unique, otherwise there are alternatives

indicated by multiple asteriskc

The above relations in the DP model are constructed recursively from the last stage

backwards. The actual formulas may depend on the particular spreadsheet environment. In

any case, it is possible to implement the DP method nonprocedurally so that when

immediate payoffs are changed, the solution will be recomputed automatically. Dynamic
programming recursion is perhaps the simplest and most natural example of the
nonprocedural implementation of optimization algorithms on spreadsheets.

4. LINEAR PROGRAMMING

Both the algebraic formulation of linear programs and the simplex method [Dantzig

1963) have natural tabular formats: On a spreadsheet, one can encode the definition of the
simplex tableau. Using a considerably more intricate and elaborate design of a recursive system

than that for DP, the tableau can be updated automatically until the stopping criterion is met. In

the following, we will describe a particular implementation in some detail.

Consider the following linear programming problem.

Maximize 8A + IIB + 9.5C

Subject to 3A + 2B + 4C _< 74

A + 2B S 40

2A + 3C S 50

B _<I0

A,B,C > 0
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A B C D E F G H I J K L M

0 Stop: 0 Status: Phase 2
2 if Piv PIVC -,

3 PIVC: 0 0 0 0 0 1 0 1 6
4 1: 1 2 3 4 5 6 7 a Bi-s

6 Pivot Row 0 0 0 0 0 0 0 10
7
a i: PavCol 1__ _ t*s DI

9 -1 0 0 0 0 0 0 0 0 0 0
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I 1 1 2 1 0 0 0 3 2 4 74 1, 37 0

I 2 2 2 0 1 0 0 1 2 0 40 2 20 0

1 3 3 0 0.S 0 0 3 o 3 50 * ..... 0
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_6 _MnRat PIVR
17 _ _ 10 41 J PrW 1

Figure 5. Initial Tableau for LP Example
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Figure 6. Final Tableau for LP Example

Figure 5 illustrates a spreadsheet implementation of the simplex tableau. Initially, this

represents the original problem in standard form. However, the formulas involved are defimed

in such a way that subsequent recalculations lead eventually to the final tableau shown in

Figure 6. The required formulas are tabulated below in generic, pseudo-code format so that we

are not confined to the specifics of particular software.
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CLRn Conten Formula

Al Mode 0 to initialize; I thereafter

C1 Iteradon Count If Mode--O then 0, else Iteration Count+1

F1 Solution Status If SumOflnfeasibilities>O then

if pivot then "Phase I"

else "Infeasible"

else if MaxReducedCost:,0 then "Optimal"
else if pivot then "Phase 2"

else "Unbounded"

C3.,13 Pivot Column Selector If SumOflnfeasibilities>0 then

if Phase I ReducedCost of Column =

MaxPhase IReducedCost and

MaxPhase lReducedCost > 0 then

Value=l

else Value=0

else if Phase2ReducedCost of Column =

MaxPhase2ReducedCost and

MaxPhase2ReducedCost > 0 then

Value=l

else Value=O

J3 Pivot Column Indicator Max(C3..13)

K 3 Pivot Column Index If PivotColumnIndicator=0 then
Value="None"

else Value--index of first column with Pivot

Column Selector of I

C4..J4 Column Indices j=i1....8

C6..J6 Pivot Row A vertical look-up of the pivot row

A9..A14 Row Indices i= -I for Phase I Objective

i= 0 for Phase 2 Objective

i = 1,...,4 for constraints

B9..B 14 Pivot Column A horizontal look-up of the pivot column

C9..F9 Phase I Reduced Costs If Mode>(O then NewValue=Simplex Pivot

for Logical Variables Update of OldValue (using the pivot

and appropriate entries in the pivot row

and pivot column)
else if Logical Variable is in an " row
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then Value=O

else Value=Partial Sum of column

corresponding to pivoting on

artificials

G9..19 Phase I Reduced Costs If Mode>O then NewValue=.Simplex Pivot

for Structural Variables Update of OldValue

else Value=Parial Sum of column

corresponding to pivoting on

artificials
J9 Sum of Infeasibilities Same as above

C10..FI0 Phase 2 Reduced Costs If Mode>O then

for Logical Variables if Logical Variable is in an "-" row
then Value=O

else NewValue=Simplex Pivot Update

of OldValue

else Value--O

G 10..110 Phase 2 Reduced Costs If Mode>O the NewValue=Simplex Pivot

for Structural Variables Update of OldValue

else if Minimization then Value= -Objective

Coefficient of Structural Variable

else Value=Objective Coefficient of

Structural Variable

J10 Phase 2 Objective Value If Mode>O then NewValue=Simplex Pivot

Update of OldValue
else Value = 0

C11,D12.....F14 Diagonal entries in If Mode>O then

Tableau for Logical if Row is Pivot Row then NewValue =

Variables OldValue/Pivot

else NewValue=Simplex Pivot Update

of OldValue

else if RightHandSide:O then

if not ">" constraint then Value=l

else Value= -I
else if ":5" constraint then Value= -1

else Value=1

Cl 1..F14 except above
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Off-diagonal entries in If Mode>O then
Tableau for Logical if Row is Pivot Row then NewValue
Variables Old Value/Pivot

else New Value=Simplex Pivot Update

of Old Value
else Value=O

G 1I. .14 Tableau for Structural If ModevO then
Variables if Row is Pivot Row then NewValue

Old Value/Plivot
else New Value=Sinmplex Pivot Update

of Old Value
else if RightHandSide>O then

Vaiue=Matrix Coefficient

else Value= - Matrix Coefficient
J I..J 14 Right-Hand-Side of If Mode>O then

Tableau if Row is Pivot Row then NewValue

Old Value/Pivot
else NewValue=Sixnplex Pivot Update

of Old Value
else Value=Absolute Value of

RightHandSide
M9 Maximum Phase I If Max(C9..19)>O then

Reduced Cost Value= Max(C9..19)

else Value=-O
;N 0"1aximurn Phabe If Max(ClO.IO)>O then

Reduced Cost Value= Max( ClO..I10)

else Value=O

KI 1. .K 14 Basis Indices If Mlode>O then

(Index of Column if row is Pivot Row then
basic in Row) NewValue=Index of Pivot Column

else New Value=-Old Value
else if RightHandSide, O and "5" constraint

then Value=Row Index

else if RightHandSide<O and "2:" const-

raint then Value=Row Index
else Value= -Row Index
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Li1 ..L14 Pivot Ratios If nonbinding row then Value-Infinity

else if TableauEntry>Pivot Tolerance and
RighHandSide2O then Value=

RightHandSide frableauEntry

else if TableauEntry< Zero Tolerance

and basic column is artficial
and RightHandSide< Zero

Tolerance then Value=4

else Value-Infinity

M I L.M 14 Min Ratio Indicator If Ratio=MinRatio and MinRatio<Infinity

then Value=Row Index

else Val ue=O
L17 Min Ratio MIN(LII..LI4)

M17 Pivot Row Index MAX(MI .,M14)

M 18 Pivot If PivotRow=O then Value="none"
else Value=Pivot Coefficient in Tableau

Note that the above spreadsheet template is a complete implementation of the
two-phase simplex method for general LP problems with any type of constraints and

right-hand-sides. A similar approach that is less compact and less general first appeared in

[Carroll 1986]. To gain this compactness in the present design, it is necessary to
recalculate various ranges of the spreadsheet separately. This can be automated by a few

lines of macro instructions of the following form.

While PivotColumnl ndex*" None" and PivotRowlndex*"None"

Recalculate (A I..M18) (Update Tableau)

Recalculate (C3..K3) (Find pivot column)

Recalculate (B9..B 14)

Recalculate (L 11..L17) (Find pivot row)

Recalculate (M9..M 18)

The basic difference between the spreadsheet implementation and, say, a con-

ventional Fortran code of the simplex method, or one coded in a spreadsheet macro
language [Ho 1987] is that the former emphasizes the actual definition of the important

concepts whereas the latter deals with their translation into computational procedures.
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Essentially the spreadsheet in Figure 5 says that the simplex tableau is the update of itself.
The definition of the update is incorporated directly into the formulas for the cells holding

t,. iableau, just like the defintition of matrix multiplication is expressed in our earlier

example. The process of constructing the entire LP spreadsheet can also be automated with

e.g. macro programs that define all the appropriate ranges and formulas according to given
dimensions. Functional versions of such software using Lotus 1-2-3 [Lotus Development
Corporation 1985] are used in this work. While we are not concerned with direct
comparisons of computational efficiency at this stage, it is clear that memory usage in the

nonprocedural approach is going to be high because of the replication of formulas.
However, such redunduncy may be exploited eventually in parallel computations as we
shall discuss in some generality in the next section. In terms of solution speed, it is
significantly more efficient than a macro program for the simplex method [Ho 1987]. To
date, our initial experience has been with small textbook problems with less than 50
constraints.

5, HYPERCELLS AND PARALLEL COMPUTATION

The spreadsheet belongs to a new paradigm in computing environments that is still
in its infancy. Our effort is to illustrate its implications in mathematical programming rather
than to extol its actual efficacy. Critics who hasten to challenge the significance of this
association should be reminded of the case with parallel computing. There too, one often
found it difficult to justify radical approaches for incremental improvements. However, as
multiprocessor computers become prevalent, a constructive rethinking of computational
methodology begins to take shape. Along such lines, we conclude the paper with a vision

of the nonprocedural environment.
Consider the n-dimensional generalization of the two-dimensional spreadsheet. It is

an array of n-tuples that we shall call hypercells. Each hypercell may contain text, a value
or a function in values in other hypercells. Functions are defined in a given library and
should include all the usual mathematical and logical operations. A protocol for the
recalculation of functional values is also given.

As an example of the possible application of such a computing environment, we can
extend the above optimization models and have a third dimension representing changes in
parameters as a function of discrete time points. The nonprocedural implementation of
linear or dynamic programming can then provide time-phased solutions to a sequence of
related problems. At this writing, the forthcoming version of a popular spreadsheet
software package is already slated to be three-dimensional.

With the rapid development of parallel computer architecture (see e.g. [Fox and
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Messina 19871), it will also become attractive to distribute the tasks of recalculating the

hypercells over an array of processors. The fact that formulas are explicitly associated with

each hypercell in the nonprocedural implementation of numerical methods makes it

especially suitable for parallel processing. The main concern with programming in this

environment will be the control of the interdependencies of data with respect to the given

protocol for recalculation. In cases where most of the hypercells can be updated

independently and concurrently, like most entries in our LP tableau, this parallel

nonprocedural approach should be very efficient. While the performance of single

processors are bounded by physical limits, their costs are continuing to lower. For this

reason, a multiprocessing hypercell computing environment should become viable in the

foreseeable future.
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